ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data

نویسندگان

  • Vincent Gardeux
  • Fabrice P. A. David
  • Adrian Shajkofci
  • Petra C. Schwalie
  • Bart Deplancke
چکیده

Motivation Single-cell RNA-sequencing (scRNA-seq) allows whole transcriptome profiling of thousands of individual cells, enabling the molecular exploration of tissues at the cellular level. Such analytical capacity is of great interest to many research groups in the world, yet these groups often lack the expertise to handle complex scRNA-seq datasets. Results We developed a fully integrated, web-based platform aimed at the complete analysis of scRNA-seq data post genome alignment: from the parsing, filtering and normalization of the input count data files, to the visual representation of the data, identification of cell clusters, differentially expressed genes (including cluster-specific marker genes), and functional gene set enrichment. This Automated Single-cell Analysis Pipeline (ASAP) combines a wide range of commonly used algorithms with sophisticated visualization tools. Compared with existing scRNA-seq analysis platforms, researchers (including those lacking computational expertise) are able to interact with the data in a straightforward fashion and in real time. Furthermore, given the overlap between scRNA-seq and bulk RNA-seq analysis workflows, ASAP should conceptually be broadly applicable to any RNA-seq dataset. As a validation, we demonstrate how we can use ASAP to simply reproduce the results from a single-cell study of 91 mouse cells involving five distinct cell types. Availability and implementation The tool is freely available at asap.epfl.ch and R/Python scripts are available at github.com/DeplanckeLab/ASAP. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

RNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers

Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017